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Using a forward-backward representation of all degrees of freedom in a system, we present a rigorous
formulation of semiclassical correlation functions or expectation values where the contribution of the prefactor
is compensated for by the semiclassical phase. This procedure eliminates the need for computing the
semiclassical prefactor whose determination amounts to evaluating the full stability matrix, resulting in a
scheme that scales linearly with the number of degrees of freedom. Numerical calculations show that, while
some interference is lost, the scheme is capable of capturing most features important to the vibrational dynamics
and spectroscopy of multidimensional systems.

As efforts to tackle the many-body quantum dynamics
problem continue, significant attention has been given to
semiclassical methods. Time-dependent semiclassical theory1,2

offers an approximate, yet rigorous alternative to full quantum
mechanics. Despite its restriction to trajectories that satisfy
Newton’s classical equations, the semiclassical propagator has
been shown to capture all aspects of quantum dynamical effects
semiquantitatively3,4 (with the possible exception of tunneling5)
and its accuracy is deemed adequate for application to atomic
or molecular systems, even when the underlying classical motion
is chaotic.6,7 The focus of these efforts during the 1990s has
been on the further development and the use of convenient
representations that avoid the root search problem3,8,9 as well
as techniques for dealing with the sign problem that originates
from the rapidly oscillatory semiclassical phase.10-13 A major
step toward a rigorous solution of the latter is the development
of forward-backward semiclassical dynamics (FBSD).14-18 The
main idea is to combine the forward and reverse time evolution
operators entering ensemble averaged correlation functions into
a single propagator which is then evaluated semiclassically.
After reaching the desired propagation time, each sampled
trajectory continues in the negative time direction. The backward
propagation step results in extensive cancellation and the
corresponding action is generally small, leading to a smooth
integrand that is amenable to Monte Carlo procedures.

Given the dramatic success of FBSD in reducing the severity
of the phase cancellation, rigorous semiclassical simulations of
truly large systems appear to be hindered mainly by the need
to evaluate the prefactor, various forms of which enter all
representations of the semiclassical propagator. The prefactor
involves elements of the stability matrix, whose evaluation for
a system ofn degrees of freedom requires the solution of (2n)2

differential equations. As a consequence, the required numerical
effort grows rapidly and systems of several tens of atoms appear

to remain out of reach. Miller and co-workers have shown12,13

that by linearizing the actions that appear in the semiclassical
representation of correlation functions in the difference of the
endpoints of the forward and backward trajectories one arrives
at the conventional quasiclassical dynamics method19,20 where
initial conditions are sampled from the Wigner-Weyl trans-
form21,22 of the initial density. That prescription is appealing
because of its simplicity and practical because it does not require
the evaluation of a prefactor. The cost of the simplification is
the partial loss of interference.23

The present Letter presents a rigorous FBSD expression in
which the prefactor can be compensated for by the semiclassical
phase. The elimination of the prefactor in the present formulation
arises naturally from a stationary phase treatment of all
integration variables, which results in trajectories whose forward
and backward parts differ by an infinitesimal amount. Because
of this last feature, the present formulation is similar in spirit
to the linearization approximation,12,13,19,20although its math-
ematical form is not related to the latter in any obvious way
and it does not involve any other approximations besides the
stationary phase method. While rigorous and consistent in its
treatment of all degrees of freedom, this formulation also
neglects interference between distinct forward and backward
trajectories. As in the linearization approximation, the limitations
of this scheme need to be examined carefully, and numerical
calculations are employed to evaluate the accuracy of the
procedure.

Throughout this Letter we focus on correlation functions of
the type

whereF(0) is the density operator of the initial ensemble, and
A andB are general operators. To keep the presentation simple
we use one-dimensional notation, noting that the multidimen-
sional generalization of the theory presented below is straight-
forward. Miller and co-workers have employed the Weyl

* Author to whom correspondence should be addressed at School of
Chemical Sciences, University of Illinois, 601 South Goodwin Avenue,
Urbana, IL 61801.

C(t) ) Tr(F(0)AeiHt/pBe-iHt/p) (1)
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transformation to convert operators to an exponential form.16,18

Instead, we use here a derivative identity to arrive at an
exponential representation. The correlation function is thus
written as

The product of three exponential operators in this expression
can be interpreted as propagation with the following time-
dependent Hamiltonian:16,18

The classical dynamics generated by this effective Hamiltonian
are described by Hamilton’s equations,

According to these, the position and momentum of a trajectory
jump at timet by the amounts

The action generated by the Hamiltonian of eq 3 also increments
discontinuously at the timet by the amount

Application of the semiclassical approximation to the effective
Hamiltonian in the coherent state representation brings eq 2 to
the form

Here |g〉 are coherent states described by the wave functions

S is the action in combined forward and backward time which
includes the discontinuous increment of eq 6, andD is the
forward-backward Herman-Kluk prefactor which is given by
the expression

Equation 7 is to be evaluated via the finite difference method.
Note that since no momentum jump occurs forµ ) 0, the
classical trajectories remain continuous at all times in this case,
implying xf ) x0, pf ) p0, and S ) 0. As a consequence,
evaluation of the derivative requires a single trajectory propaga-
tion at a small value ofµ:

For simplicity of presentation we assume below that the operator
B depends only on the position of the probed degree of freedom;

in this case only the momentum jumps at timet, while the
position of the trajectory remains continuous.

All three factors in the integrand of eq 7 depend on the
parameterµ. In the prefactor and coherent state matrix element
this dependence enters through the endpoints of the trajectory,
which are determined by the momentum increment at the time
t. The action, however, depends onµ both through its
dependence on the backward trajectory and through the incre-
ment given by eq 6. The momentum jump and the action
increment are uniquely determined from the Hamiltonian
dynamics generated by eq 3. Below, however, we allow them
to vary independently, attempting to compensate for the
contribution of the prefactor by the other terms.

To this end, we partition the correlation function into a part
c1(t) involving the derivative of the prefactor and a partc2(t)
comprising both other terms:

Since the momentum jump is proportional to the finite difference
parameterµ, which is infinitesimal, we proceed to linearize the
trajectories as well as the action inδp. The details will be
presented in another publication.24 The result is of the form

where ∂p(t)/∂µ is the change of the momentum jump with
respect to the parameterµ and the termλ(t) arises from the
action increment, eq 6. Noting that the ratio of the slopes of
these functions is independent of the system, it is clear that one
can scale the momentum jump to eliminate the contribution from
C1(t). Since the ratio of the slopes is equal to 2, it follows that
∂popt(t)/∂µ ) 1/2pB′(t) and thus the optimal value of the
momentum jump for which the correlation function is given
entirely by the second component is

To summarize, the correlation function is given by the
expression

The trajectories follow the classical equations of motion with
the Hamiltonian H up to the time t, at which point the
momentum component jumps by the value given in eq 13 for
a small value of the finite difference parameterµ. At the same
time the action increments by the full amount given by eq 6.
Subsequent evolution takes place in the negative time direction
and the integrand is evaluated when the time parameter reaches
zero once again.

As the momentum jumps in this formulation are infinitesimal,
the net forward-backward action is small; in addition, the
proximity of the final trajectory values to the initial conditions
implies smoothness of the coherent state matrix element. For
these reasons Monte Carlo evaluation of the phase space integral

C(t) ) -i
∂

∂µ
Tr(F(0)AeiHt/peiµBe-iHt/p)|µ)0 (2)

H̃(t′) ≡ H - pµBδ(t′ - t) (3)

x̆(t′) ) ∂H̃
∂p

) ∂H
∂p

- pµ∂B
∂p

δ(t - t′),

p̆(t′) ) - ∂H̃
∂x

) - ∂H
∂x

+ pµ∂B
∂x

δ(t - t′)
(4)

δx ) -pµ∂B
∂p

, δp ) -pµ∂B
∂x

(5)

δS) pµB(t) (6)

C(t) ) -i(2π p)-1 ∂

∂µ∫dx0∫dp0 D(x0,p0)exp( i
p
S(x0,p0))

× 〈g(x0,p0)|F(0)A|g(xf, pf)〉|µ)0 (7)

〈r|g(r0,p0)〉 ) (2γ
π )1/4

exp(-γ(x - x0)
2 + i

p
p0(x - x0)), (8)

D(x0,p0) ) 2-1/2x∂xf

∂x0
+

∂pf

∂p0
- 2ipγ

∂xf

∂p0
- 1

2ipγ
∂pf

∂x0
(9)

C(t) ≈ - i
µ

(2πp)-1∫dx0∫dp0[D(x0,p0)exp( i
p
S(x0,p0))

× 〈g(x0,p0)|F(0)A|g(xf,pf)〉 - 〈g(x0,p0)|F(0)A|g(x0,p0)〉] (10)

C1(t) ≡ -i(2πp)-1∫dx0∫dp0
∂D
∂µ |µ)0

〈g(x0,p0)|F0A|g(x0,p0)〉

(11a)

C2(t) ≡ C(t) - C1(t) (11b)

C1(t) ) ∫dx0∫dp0f(x0,p0)
∂p(t)
∂µ

,

C2(t) ) -2∫dx0∫dp0f(x0,p0)
∂p(t)
∂µ

+ λ(t)

(12)

δpopt ) 1
2

pµB′(t) (13)

C(t) ) -i(2π p)-1 ∂

∂µ∫dx0∫dp0exp( i
p
S(x0,p0))

× 〈g(x0,p0)|F(0)A|g(xf, pf)〉|µ)0 (14)

7754 J. Phys. Chem. A, Vol. 103, No. 39, 1999 Letters



of eq 14 is well behaved numerically. More importantly from
the point of view of the present work, the absence of a prefactor
from eq 14 leads to practically linear scaling of the method
with the number of degrees of freedom.

It should be noted, however, that the prefactor-free expression
obtained in this Letter is not equivalent to the semiclassical
expression obtained recently in other works.16,17These expres-

sions break up the semiclassical propagation into separate
forward and backward components in the space of the system;
for example, the result of ref 17 reverts when applied to a one-
dimensional system to the full semiclassical expression that
employs a double-phase space average,

wherex′F,p′F andxB′B,p′B are the endpoints ofseparateforward
and backward trajectories, respectively. By integrating explicitly
over the initial condition of the backward trajectory, eq 15
accounts for the interference between distinct classical trajec-
tories of the forward and reverse time propagators. At the same
time, evaluation of eq 15 is considerably more demanding,
primarily due to the need for integration of the stability matrix.

Equation 14 is still exact for harmonic potentials. This is a
consequence of the lack of multiple bounce solutions for linear
systems. The neglect of forward-backward interference may
result in large error if eq 14 is applied to highly anharmonic
Hamiltonians. Sun et al.23 have found that the linearization
approximation of Miller and co-workers, which also neglects
similar interference terms, captures the short time, transition-
state-like features of thermal rate constants correctly but fails
to describe nonclassical aspects of the recrossing dynamics
resulting from quantum interference on the time scale of two
or more vibrational periods. We expect eq 14 as well to yield
reasonably accurate results for correlation functions in multi-
dimensional potentials where relaxation and dissipative effects
tend to weaken interference phenomena.

To test the ability of eq 14 to describe the intermediate-time
behavior of observables or correlation functions we apply it to
three model problems. The first model is motivated from the
vibrational spectroscopy and local mode dynamics of benzene.
We choose a three-dimensional model of the form

wherex1 represents the coordinate of a CH stretch andx2 the
CCH in-plane wag,25,26while x3 is a fictitious mode degenerate
with x2 but coupled tox1 twice as strongly which is added to
provide a challenge to the calculation. Rather than studying the
energy flow out of an excited local mode, we calculate here
the position correlation function ofx1. The results of the present
FBSD scheme, eq 14, with 20 000 Monte Carlo samples per
integration variable are shown in Figure 1 and compared to those
of a converged fully quantum mechanical calculation using the
split operator method.27 The agreement is quite satisfactory for
both the real and the imaginary parts over several oscillation
periods.

The next two cases involve the average position of a strongly
anharmonic oscillator,

with ω0 ) x2 anda ) b ) 0.1. Figure 2 shows the position
expectation value〈x(t)〉 with respect to an initially shifted ground

Figure 1. Position correlation function for the three-dimensional model
of energy transfer in benzene. Solid line: exact results obtained via
the split propagator method. Markers: FBSD without prefactor with
20 000 trajectories for each integration variable. (a) Real part. (b)
Imaginary part.

Figure 2. Average position for a one-dimensional quartic oscillator.
Solid line: exact results obtained via the split propagator method. Solid
circles: FBSD without prefactor. Hollow squares: fully semiclassical
propagation. Hollow triangles: linearized (Wigner) approximation.

C(t) ) (2π p)-2∫dxF∫dpF∫dxB∫dpB DF(xF,pF)

× DB(xB,pB)exp( i
p
S(xF,pF,xB,pB)) (15)

× 〈g(xF,pF)|F(0)A|g(x′B,p′B)〉〈g(xB,pB)|B|g(x′F,p′F)〉

V(x1,x2,x3) ) D(1 - e-ax1)2 + 1
2
m0ω0

2e-cx1x2
2

+ 1
2
m0ω0

2e-2cx1x3
2 (16)

H0 ) 1
2
p2 + 1

2
ω0

2x2 - ax3 + bx4 (17)
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state (centered aboutx0 ) 1) as obtained according to eq 14
and compares to exact quantum mechanical results27 and also
to the results of the full semiclassical expression17 (which in
this one-dimensional case is equivalent to eq 15) and those of
the Wigner-type linearized approximation.12,13,19,20It is seen that
the single forward-backward trajectory treatment of eq 14
captures the dynamics semiquantitatively over several vibrational
periods, although its accuracy degrades with each successive
bounce and leads to faster dephasing compared to the quantum
mechanical result. The Wigner expression displays very similar
behavior. By contrast, the full semiclassical result leads to a
faithful representation of the dynamics over much longer times
but at a much higher computational cost.

As a final test, we examine the average position of the same
system in the presence of a 30-dimensional harmonic bath,

whose frequencies and coupling constants are distributed
according to an Ohmic spectral density.28 Although the 30
degrees of freedom of eq 18 cannot provide true dissipation,
the observed behavior closely resembles dissipative dynamics
over many periods of motion. As seen in Figure 3, the agreement
between the results of eq 14 and the exact quantum mechanical
evolution obtained via iterative evaluation of the path integral29

is now nearly quantitative at all times for which the particular
bath discretization employed here provides a valid representation
of the dissipative dynamics.

In conclusion, the present FBSD scheme represents a rigorous
semiclassical treatment of all degrees of freedom in combined
forward and backward time where the contribution of the
prefactor is compensated for by the semiclassical phase,
eliminating the need for evaluation of the stability matrix. As
the forward-backward treatment is equivalent to a stationary
phase evaluation of the midpoint integral in the full semiclassical
expression where each time evolution operator separately is
approximated by the Van Vleck expression, some interference
features are lost in the present formulation. Yet, the numerical
examples presented show that the method is capable of capturing
semiquantitatively most aspects of the evolution that are relevant
to the vibrational dynamics and spectroscopy of polyatomic
systems.
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Figure 3. Average position for a quartic oscillator coupled to a bath
of 30 harmonic degrees of freedom at zero temperature. The Kondo
parameter is (a)ê ) 0.25 and (b)ê ) 0.50. Markers: FBSD results
with 10 000 trajectories for each integration variable. Solid line: exact
results obtained via iterative evaluation of the path integral.
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